Transistor Compact modeling using IVCAD
Transistor Compact modeling using IVCAD

Model Schematic

- Based on 18-element
- Compatible with ADS and MO
Transistor Compact modeling using IVCAD

Measurement System

- **Short pulse**: Quasi-isothermal conditions
- **Low duty cycle**: Constant mean temperature
- **Quiescent bias point**: Thermal conditions fixed

Advantages

- High power dissipated areas // safe operating conditions
- Thermal effects: influence of QP on Idss
- Trapping effects (gate lag, drain lag)
- Precious modelling data inputs
Transistor Compact modeling using IVCAD

Compact modeling flow

Small-Signal

Non-linear capacitances

IV Model

Thermal model

Trapping effects

Rs, Rd

\[y = 0.0029x + 0.6375 \]
\[y = 0.0049x + 0.6889 \]

\[0.4 \quad 0.6 \quad 0.8 \quad 1 \quad 1.2 \quad 1.4 \quad 1.6 \]

\[0 \quad 50 \quad 100 \quad 150 \quad 200 \]

\[T \, ^\circ\text{C} \]

Ri

─

Cds

τ

Gm

Gd

Cgs

Cgd

Dgs=f(Vgs)

Dgd=f(Vgd)

\[\text{Cgs}=f(Vgs) \]

\[\text{Cgd}=f(Vgd) \]

\[\text{Dgs}=f(Vgs,T) \]

\[\text{Dgd}=f(Vgd,T) \]

\[\text{Ids}=f(Vgs,Vds,T) \]

\[\text{Rs}=f(T) \]

\[\text{Rd}=f(T) \]

\[\text{Ids}=f(Vgs_\text{trap},Vds,T) \]

AMCAD Engineering

Advanced Modeling for Computer-Aided Design

Partnering with

Maury Microwave
Transistor Compact modeling using IVCAD

Compact modeling flow: Extraction of the linear model

- Small-Signal
 - Ri, Cds
 - Cgs, Cgd, Rgd

- Non-linear capacitances
 - Dgs=f(Vgs)
 - Dgd=f(Vgd)
 - Cgs=f(Vgs)
 - Cgd=f(Vgd)

- IV Model
 - Ids=f(Vgs, Vds)

- Thermal model
 - Dgs=f(Vgs, T)
 - Dgd=f(Vgd, T)
 - Ids=f(Vgs, Vds, T)

- Trapping effects
 - Rs=f(T)
 - Rd=f(T)
 - Ids=f(Vgs_trap, Vds, T)

Partnership with Maury Microwave
Compact modeling flow: Extraction of the linear model

Linear Model optimization

Multi-biasing extraction methodology of the linear model

There is only one set of extrinsic parameters for which intrinsic parameters are independent from the frequency.

For a given set of extrinsic parameters, intrinsic admittance matrix of the device is extracted from measured [S] parameters.
Transistor Compact modeling using IVCAD

Compact modeling flow: Extraction of the linear model

STEP 1: COLD FET MEASUREMENTS (Optional):

Vgs: Channel Open; Vds=0V

Shottky junction conduction @ Vds=0V

\[Rs = \text{real}(Z_{21}) - \frac{R_c}{2} \]
\[Rd = \text{real}(Z_{22}) - \text{real}(Z_{21}) - \frac{R_c}{2} \]
\[R_g \approx \text{real}(Z_{11}) - \text{real}(Z_{21}) + \frac{R_c}{6} \]

\[L_s = \text{Im}(Z_{21}) / W \]
\[L_d = (\text{Im}(Z_{22}) - \text{Im}(Z_{21})) / W \]
\[L_g = (\text{Im}(Z_{11}) - \text{Im}(Z_{21})) / W \]
Transistor Compact modeling using IVCAD

Compact modeling flow: Extraction of the linear model

STEP 2: COLD FET MEASUREMENTS (Optional):

Vgs: Channel Closed; Vds=0V

Channel pinch-off conditions

\[C_{pd} = (\text{Im}(Y_{22}) + \text{Im}(Y_{21})) / W \]

\[C_{pg} = (\text{Im}(Y_{11}) + 2*\text{Im}(Y_{21})) / W \]
Transistor Compact modeling using IVCAD

STEP 3: HOT FET (S parameters @ Quiescent bias point)

Set min. and max. for each extrinsic parameter
- user choice
- initiated by cold FET meas.

Optimization algorithm: annealing, fast simulated diffusion
(intrinsic parameters calculus)
STEP 3: HOT FET (S parameters @ Quiescent bias point)

- The selection of several plots enable to get rid off unrealistic solutions (Resistance >=0 only)
- Optimization can be launched simultaneously for all the points selected
- Each linear model has the same extrinsic values
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)
Nonlinear model extraction

Small-Signal

Non-linear capacitances

IV Model

Thermal model

Trapping effects

Rg, Lg, Cpg, Ls, Cpd, Ld, Rs, Rd

Ri, Cds, τ, Gm, Gd, Cgs, Cgd, Rgd

Dgs=f(Vgs)
Dgd=f(Vgd)
Ids=f(Vgs,Vds)

Dgs=f(Vgs,T)
Dgd=f(Vgd,T)
Ids=f(Vgs,Vds,T)

Ids=f(Vgs_trap,Vds,T)

Rs=f(T)
Rd=f(T)

Partnering with

AMCAD Engineering
Advanced Modeling for Computer-Aided Design

Maury Microwave
Compact model of GaN transistor (on-wafer)

- 1 dimension capacitances extracted along optimal load-line are preferred due to simplicity.
- 1D capacitance models with equations based on hyperbolic tangents are naturally charge conservatives.
- Output Capacitance Cds is linear – no voltage dependence (weak anyway)

\[C_{gd} = f(V_{gd}) \]
\[C_{gs} = f(V_{gs}) \]
\[\frac{\partial C_{gs}}{\partial V_{gd}} = \frac{\partial C_{gd}}{\partial V_{gs}} \]
- Modeling simplicity. Very good convergence.
- The charges in the transistor are conservatives.
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)

Cgd

- Feedback capacitance Cgd is a strong function of drain voltage.

\[V_{gd} = V_{gs} - V_{ds} \approx -V_{ds} \]

GaN devices

Non linear capacitances

C0
C1
C2
A
B
Vm
Vp

Vgs variation

Intrinsic Vgd

Cgd

GaN devices

Measure
Model

Vgd = Vgs - Vds \approx -Vds
Cgs Input capacitance Cgs is a strong function of gate voltage.

The gate-voltage non-linearity also effects model’s harmonic generation.
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)

IV model

Small-Signal

Non-linear capacitances

IV Model

Thermal model

Trapping effects

Rg, Lg, Cpg, Ls, Cpd, Ld, Rs, Rd

Ri, Cds, \tau, Gm, Gd

Rg=f(T)

Rd=f(T)

Dgs=f(Vgs, T)

Dgd=f(Vgd, T)

Ids=f(Vgs, Vds, T)

Ids=f(Vgs_trap, Vds, T)

Cgs=f(Vgs)

Cgd=f(Vgd)

Cgs=f(Vgs)

Cgd=f(Vgd)

Rs=f(T)

Rd=f(T)
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)

Selection of curve without Gate Current + 1 or 2 curves With Gate current

\[I_{Gd} = I_{SGd} \cdot \left(e^{\left(\frac{G \cdot Vd}{N_{gd} \cdot K \cdot T} \right)} - 1 \right) \]

\[I_{Gs} = I_{SGs} \cdot \left(e^{\left(\frac{G \cdot Vd}{N_{gs} \cdot K \cdot T} \right)} - 1 \right) \]

• Gate-drain and gate-source diode equations include forward conduction of gate current
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)
IV model : output current

- AMCAD drain current model formulation allows to predict very accurately the I-V curves, the partial derivatives gm and gd, the knee voltage and the transconductance decrease at high current.

M, P ↔ fitting parameters
AlphaGm, Vgm, BetaGm, Vdm ↔ gm (derivative)
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)

Electro thermal model

Small-Signal

Non-linear capacitances

IV Model

Thermal model

Trapping effects

\[y = 0.0029x + 0.6375 \]
\[y = 0.0049x + 0.6889 \]

\[y = -0.0008x + 1.1543 \]

\[R_s, R_d \]

\[R_{g}, L_{g}, C_{pg}, L_s, C_{pd}, L_d, R_s, R_d \]

\[R_{i}, C_{ds}, T, G_{m}, G_{d}, C_{gs}, C_{gd}, R_{gd} \]

\[D_{gs} = f(V_{gs}) \]
\[D_{gd} = f(V_{gd}) \]
\[I_{ds} = f(V_{gs}, V_{ds}) \]

\[D_{gs} = f(V_{gs}, T) \]
\[D_{gd} = f(V_{gd}, T) \]
\[I_{ds} = f(V_{gs}, V_{ds}, T) \]

\[I_{ds} = f(V_{gs_trap}, V_{ds}, T) \]

\[R_{s} = f(T) \]
\[R_{d} = f(T) \]
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)

• Temperature dependence with ambient or chuck temperature
 -40°C
 25°C
 150°C

• Static and Dynamic self-heating effects

AMCAD Engineering
Advanced Modeling for Computer-Aided Design
Maury Microwave
Your Calibration, Measurement & Modeling Solutions Partner
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)
Electro thermal model

Temperature dependence

Equations

Thermal parameters
- Access Resistances
- Current Source
- Diodes

Rs = Rs₀ + α₁ Rs₁ T
Rd = Rd₀ + α₁ Rd₁ T
Idss = Idss₀ + Idss₁ T
P = P₀ + P₁ T
Ngs = Ngs₀ + Ngs₁ T
Ngd = Ngd₀ + Ngd₁ T
Isgs = Isgs₀ + Isgs₁ e(T/Tgs)
Isgd = Isgd₀ + Isgd₁ e(T/Tgd)
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)

Thermal resistance extraction → coincidence method

\[I_{ds} \quad \text{same } V_{gs} \]

\[\begin{align*}
DC, \ T_{chuck1} &= 25^\circ C \\
Pulsed \ from \ (0,0), \ T_{chuck2} &= 100^\circ C \\
\end{align*} \]

\[\begin{align*}
\text{DC curve} \\
T_{j1} &= T_{chuck1} + R_{th} P_{diss1} \\
\text{Pulsed curve} \\
T_{j2} &= T_{chuck2} + R_{th} P_{diss2} \\
\end{align*} \]

At intersection point

\[T_{j1} = T_{j2} \]

\[T_{chuck1} + R_{th} P_{diss1} = T_{chuck2} \]

\[\Rightarrow \]

\[R_{th} = \frac{(T_{chuck2} - T_{chuck1})}{P_{diss1}} \]
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)

Electro thermal model

Thermal impedance extraction – by measurements

Wide current pulse characterization

Wide pulse characterization (1.2ms) at 25°C from (0,0) -> Zth

Self Heating Extraction = f(t)

\[i(t) = I_0 - \sum_{i=1}^{n} I_i \left(1 - \exp \left(-\frac{t}{\tau_i} \right) \right) \]

\[Z_{th}(t) = \sum_{k=1}^{n} R_{kth} \left(1 - e^{-\frac{t}{R_{kth}C_{kth}}} \right) \]

RC cells

Device dynamical self-heating

Partnering with AMCAD Engineering

Advanced Modeling for Computer-Aided Design

Maury Microwave

Your Calibration, Measurement & Modeling Solutions Partner
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)

- Drain current is only temperature dependent model element
- Takes into account ambient temperature and self-heating effects
- Thermal analog circuit to model self-heating and elevated heat sink temperatures
Transistor Compact modeling using IVCAD

Small-Signal

Non-linear capacitances

IV Model

Thermal model

Trapping effects

y = 0.0029x + 0.6375
y = 0.0049x + 0.6889

y = -0.0008x + 1.1543
Compact model of GaN transistor (on-wafer)

Trap model

- Charging and discharging of traps has influence on I_D and leads to current collapse. This is described in the model by trapping effects modifying the gate command and separated into gate and drain lag sub-circuits.
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)

Trap model

Gate-lag: decrease of drain current
- green ($V_{gs0} = 0\, \text{V}, V_{ds0} = 0\, \text{V}$)
- red ($V_{gs0} = -4\, \text{V}, V_{ds0} = 0\, \text{V}$)

Drain-lag: increase of V_knee
- red ($V_{gs0} = -3\, \text{V}, V_{ds0} = 0\, \text{V}$)
- green ($V_{gs0} = -3\, \text{V}, V_{ds0} = 30\, \text{V}$)

$T_{\text{capture}} << t_{\text{IMPUSION}} << T_{\text{émission}}$

During the pulses capture takes place, emission freezed
Transistor Compact modeling using IVCAD

Compact model of GaN transistor (on-wafer)

Trap model

Measurements to extract Drain-lag at very low dissipated power
Compact model of GaN transistor (on-wafer)

Trap model
- Decreasing form of the mean output current only reproduced with traps accurately modeled.

Graphs and Data
- **Ids (A)** vs. **Pin (dBm)**
 - Measured data (×)
 - Model without traps (red)
 - Model with traps (blue)

- **Pout (W)** vs. **Pin (W)**
 - Measured data (×)
 - Model without traps (red)
 - Model with traps (blue)

Transistor Compact modeling using IVCAD

Partnering with

AMCAD Engineering
Advanced Modeling for Computer-Aided Design

Your Calibration, Measurement & Modeling Solutions Partner
AMCAD model / -→ MO *

*Ni AWR
Transistor Compact modeling using IVCAD

AMCAD Model / Microwave Office
Transistor Compact modeling using IVCAD

DC simulation
Transistor Compact modeling using IVCAD

S parameter simulation
Transistor Compact modeling using IVCAD

HB simulation

[Diagrams of transistor compact modeling using IVCAD]
Transistor Compact modeling using IVCAD

AMCAD model -> ADS **

**Keysight Technologies
Transistor Compact modeling using IVCAD

AMCAD Model / ADS
Transistor Compact modeling using IVCAD

DC simulation
Transistor Compact modeling using IVCAD

S parameter simulation
Transistor Compact modeling using IVCAD

Thank you

AMCAD Engineering
20, rue Atlantis
87068 Limoges, France

Web Site: www.amcad-engineering.com
References

AMCAD Engineering
Advanced Modeling for Computer-Aided Design

Maury Microwave
Your Calibration, Measurement & Modeling Solutions Partner