High-Power Low-Loss Pulsed Bias Tees

DATA SHEET / 2K-002

MODELS:
MBT18-7-1000
MBT18-7-5000
MBT18-NMF-5000
MBT18-NFM-5000
High-Power Low-Loss Pulsed Bias Tees

Features

- High RF Power Handling
- High Breakdown Voltage
- High Current Handling
- Low Insertion Loss
- Excellent Return Loss
- Pulsing Capable

Applications

- High Power System Biasing
- High Power Base Station Integration
- Test and Measurement (Load Pull, Pulsed Measurements, General Lab...)

Description

Bias tees are passive RF circuits which provide DC bias to an active device under test. Normally consisting of a capacitor and inductor, bias tees act as diplexers by combining low-frequency (DC) and high frequency (RF) signals onto a common port (RF+DC). In a classic capacitor/inductor design, the capacitor acts as a DC block and prevents DC bias from entering the RF path, while the inductor acts as an RF choke preventing RF energy from entering the DC instrumentation.

Typical applications include providing bias to amplifiers inside of complex systems including base stations and radios; and biasing discrete transistors or packaged devices in test and measurement applications such as DC/pulsed-bias S-parameters, DC/pulsed-IV, DC/pulsed-bias load pull, stability-, robustness-, burn-in-, pre-production- and production-test.

Important characteristics of a bias tee include the frequency range over which the bias tee will function with minimal to no performance degradation, the insertion loss and VSWR (or return loss) over the usable frequency range of the bias tee. Voltages, currents and RF powers are critical both in average/DC/CW and pulsed/peak operations. It is also essential to have bias tees with minimal overshoot of the signals under pulsed bias/pulsed RF conditions.

Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>Connector</th>
<th>Frequency Range (GHz)</th>
<th>Insertion Loss (dB)</th>
<th>Return Loss (dB)</th>
<th>Max Voltage (V)</th>
<th>Max DC Current (A)</th>
<th>RF Rating</th>
<th>Isolation (dB) Typical</th>
<th>DC Resistance (ohm) Typical</th>
<th>DC BW (MHz) Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>RF Port</td>
<td>RF+DC Port</td>
<td>DC Port</td>
<td>Typ</td>
<td>Max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBT18-7-1000</td>
<td>7mm</td>
<td>SMA Female</td>
<td>0.35 - 18</td>
<td>0.28</td>
<td>0.6</td>
<td>22</td>
<td>100</td>
<td>1</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>MBT18-7-5000</td>
<td>7mm</td>
<td>SMA Female</td>
<td>6 - 18</td>
<td>1.1</td>
<td>1.5</td>
<td>15</td>
<td>100</td>
<td>5</td>
<td>50</td>
<td>250</td>
</tr>
<tr>
<td>MBT18-NMF-5000</td>
<td>Type N (male)</td>
<td>Type N (female)</td>
<td>SMA Female</td>
<td>6 - 18</td>
<td>1.1</td>
<td>1.5</td>
<td>15</td>
<td>100</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>MBT18-NFM-5000</td>
<td>Type N (female)</td>
<td>Type N (male)</td>
<td>SMA Female</td>
<td>6 - 18</td>
<td>1.1</td>
<td>1.5</td>
<td>15</td>
<td>100</td>
<td>5</td>
<td>50</td>
</tr>
</tbody>
</table>

1 Power and current rating valid under the following condition: $T_{on} = 100us$, Duty Cycle = 10%, $I_q \leq 500mA$. Different pulse conditions will affect the peak power and current handling.
Typical Applications

Load pull

Pulsed IV down to 1us
VISIT OUR WEB STORE TO LEARN MORE ABOUT OUR PRODUCTS

www.maurymw.com